Self-scaling fast rotations for stiff and equality-constrained linear least squares problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reduced Newton method for constrained linear least-squares problems

We propose an iterative method that solves constrained linear least-squares problems by formulating them as nonlinear systems of equations and applying the Newton scheme. The method reduces the size of the linear system to be solved at each iteration by considering only a subset of the unknown variables. Hence the linear system can be solved more efficiently. We prove that the method is locally...

متن کامل

Convexly constrained linear inverse problems: iterative least-squares and regularization

| In this paper, we consider robust inversion of linear operators with convex constraints. We present an iteration that converges to the minimum norm least squares solution; a stopping rule is shown to regularize the constrained inversion. A constrained Laplace inversion is computed to illustrate the proposed algorithm.

متن کامل

New Fast Algorithms for Structured Linear Least Squares Problems

We present new fast algorithms for solving the Toeplitz and the Toeplitz-plus-Hankel least squares problems. These algorithms are based on a new fast algorithm for solving the Cauchy-like least squares problem. We perform an error analysis and provide conditions under which these algorithms are numerically stable. We also develop implementation techniques that signiicantly reduce the execution ...

متن کامل

Linear Least Squares Problems

A fundamental task in scientific computing is to estimate parameters in a mathematical model from collected data which are subject to errors. The influence of the errors can be reduced by using a greater number of data than the number of unknowns. If the model is linear, the resulting problem is then to “solve” an in general inconsistent linear system Ax = b, where A ∈ Rm×n and m ≥ n. In other ...

متن کامل

Self-Calibration and Bilinear Inverse Problems via Linear Least Squares

Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1996

ISSN: 0024-3795

DOI: 10.1016/0024-3795(94)00092-1